<b>TOV:</b> <b>T</b>he <b>O</b>riginal <b>V</b>ision Model for Optical Remote Sensing Image Understanding via Self-Supervised Learning
نویسندگان
چکیده
منابع مشابه
Deep Self-taught Learning for Remote Sensing Image Classification
This paper addresses the land cover classification task for remote sensing images by deep self-taught learning. Our selftaught learning approach learns suitable feature representations of the input data using sparse representation and undercomplete dictionary learning. We propose a deep learning framework which extracts representations in multiple layers and use the output of the deepest layer ...
متن کاملSupervised Object Knowledge Learning for Image Understanding
An object learning system for image understanding is proposed in this paper. The knowledge acquisition system is designed as a supervised learning task. Therefore, the role of the user as teacher of the system is emphasized, which allows to obtain the object description as well as to select the best recognition strategy for each specific object. An object description is acquired by considering ...
متن کاملRemote sensing image registration via active contourmodel
Image registration is the process by which we determine a transformation that provides the most accurate match between two images. The search for the matching transformation can be automated with the use of a suitable metric, but it can be very time-consuming and tedious. In this paper, we introduce a registration algorithm that combines active contour segmentation together with mutual informat...
متن کاملSupervised Hashing for Image Retrieval via Image Representation Learning
Hashing is a popular approximate nearest neighbor search approach for large-scale image retrieval. Supervised hashing, which incorporates similarity/dissimilarity information on entity pairs to improve the quality of hashing function learning, has recently received increasing attention. However, in the existing supervised hashing methods for images, an input image is usually encoded by a vector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2023
ISSN: ['2151-1535', '1939-1404']
DOI: https://doi.org/10.1109/jstars.2023.3271312